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1. ALGEBRA 

Quadratic Equation 

For the equation  

 

Binomial expansion 

, 

where n is a positive integer, and  

 

2. TRIGONOMETRY 

Identities 
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1 It is given that sinA = 0.3, where A is obtuse.  

 Find the following trigonometric ratios. 

 (a) secA,    [2] 

  

Solution Mark 

−
10√91

91
  B1 correct value of cosA 

B1 change secA to 1/cosA 

 

 

 

 (b) cos2A.   [2] 

  

Solution Mark 

cos2A = 2cos2A – 1  

           = 2(1 – 0.32) – 1 

           = 0.82 

M1 double angle formula  

 

A1 

 

 (c) tan(A + 45°).  [4] 

Solution Mark 

tan(A + 45°) = 
𝑡𝑎𝑛 𝐴+𝑡𝑎𝑛 45°

1−𝑡𝑎𝑛 𝐴 𝑡𝑎𝑛 45°
 

                      = 

3

−√91
+1

1+
7

√51

 

                      = 
√91−3

√91+3
×

√91−3

√91−3
 

                      = 
50−3√91

41
 

 

M1 addition formula  

B1 correct value for 

tan45° 

 

M1 rationalisation 

A1 
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2 (a) Find the range of values of k such that 3x2 – 5x + k is always positive. [2] 

 

Solution Mark 

(–5)2 – 4(3)(k) < 0 

k > 
25

12
 

M1  

A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Hence, solve the inequality 
𝑥2−𝑥−2

3𝑥2−5𝑥+4
< 0.                                            [3] 

 

Solution Mark 

k = 4 > 
25

12
 , hence 3x2 – 5x + 4 > 0 

(x + 1)(x – 2) < 0 

 

 

–1 < x < 2 

M1 using part (a) 

M1 correct quadratic 

inequality in factorised 

form 

A1 
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3 It is given that f(x) = Ax(ekx), where A and k are constants. 

 Find the value of A and of k such that f ′(𝑥) + 2kekx + 6f(x) = 0 [6] 

  

Solution Mark 

f ′(𝑥) = Akxekx + Aekx 

Akxekx + Aekx + 2kekx + 6Axekx = 0 

A + 2k = 0 --------------- (1) 

Ak + 6A = 0 ------------ (2)  

From (2) A(k + 6) = 0, A = 0 (rej) or k = –6 

sub k = –6 into (1), A = 12  

M1 product rule 

M1 substitution 

M1  

M1 

A1 

A1 
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4 A curve has equation y = 
4

√𝑥+3
. A point (x, y) is moving along the curve.   

 Find the coordinates of the point at the instant where the y-coordinate is decreasing  

 at a rate twice of the rate of increase of the x-coordinate. [5] 

 

Solution Mark 
ⅆ𝑦

ⅆ𝑡
=

ⅆ𝑦

ⅆ𝑥
×

ⅆ𝑥

ⅆ𝑡
  

ⅆ𝑦

ⅆ𝑥
= −2  

4 × (−
1

2
) (𝑥 + 3)−

3

2 = −2  

x + 3 = 1 

(–2, 4) 

M1 correct formula for connected 

rate of change 

M1 correct value of 
ⅆ𝑦

ⅆ𝑥
 

M1 correct derivative 

A1 correct values of x and y 

A1 coordinate form 
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5 A metal cube is heated to a temperature of 212℃ before being dropped into a liquid.  

 As the cube cools, its temperature 𝑇℃, t minutes after it enters the liquid is given by  

 T = P + 180e–kt, where P and k are constants. 

 It is recorded that when t = 5, T = 185. 

 

 (a) Find the value of k and of P.  [4] 

 

Solution Mark 

P = 212 – 180 = 32 

32 + 180e–5k = 185 

e–5k = 0.85 

–5k = ln0.85 

k = 0.0325 (3 s.f.) 

B1 

M1 substitution 

M1 isolating the exp term 

 

A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) By sketching the graph of T against t, explain why T cannot be 30. [3] 

  

Solution Mark 

 

 

 

 

 

 

 

 

 

From the graph, the graph is completely above T = 32, 

hence, T cannot be 30. 

 

B1 correct shape 

B1 correct y-intercept and 

horizontal asymptote 

-1 if t < 0 is included 

-1 if no labelling of axis 

B1 accept any reasonable 

answer 

 

 

 

32 

T 

t 
0 

212 
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6 It is given that the first three terms, in ascending powers of x, of the binomial expansion  

 of (2 + ax)6 are 64 – 960x + bx2. 

  

 (a) Find the value of a and of b.  [3] 

Solution Mark 

26 + (
6

1
) 25(𝑎𝑥) + (

6

2
) 24(𝑎𝑥)2 = 32 – 960x + bx2 

192a = –960, b = 240a2 

a = –5, b = 6000  

M1 binomial expansion 

 

M1 compare coefficient 

A1 

 

 

 

 

 

 

 

 (b) Using the values found in part (a), find the coefficient of x3 in the expansion of  

  (1 + 3x2)5(2 + ax)6.  [4] 

 

Solution Mark 

(1 + 15x2 + … )(32 – 960x + 6000x2 – 20000x3 + …)  

 

 

coefficient of x3 = 1(–20000) + (15)(–960) 

                          = –34400  

M1 binomial expansion of  

(1 + 3x2)5  

M1 correct x3 in (2 + ax)6 

M1  

A1 
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7 In the diagram below, the line OP makes an angle of α° with the positive x-axis such that 

tan α = 0.2 and Q lies on the x-axis. 

 

 

 

 

 

 

 

 

 

 

 (a) Given that OP =  
√26

2
 units, show that P = (2.5, 0.5). [3] 

Solution Mark 

Let OP = (x, y) 

√𝑥2 + 𝑦2 =
√26

2
 ---------------- (1) 

𝑦

𝑥
= 0.2 ------------------------ (2) 

x2 + (0.2x)2 = 6.5 

x = 2.5, y = 0.5 

 

M1 using length of OP 

M1 using gradient 

 

 

A1 with working 

 

 (b) Given that the area of ∆OPQ is 0.65 units2, find the coordinates of Q. [2] 

 

Solution Mark 
1

2
× 𝑂𝑄 × 0.5 = 0.65  

OQ = 2.6 

Q = (2.6, 0) 

M1  

 

A1  

 

 (c) Explain, with calculations, why ∆OPQ is a right-angle triangle.  [3] 

Solution Mark 

gradient of PQ = 
0−0.5

2.6−2.5
= −5 

gradient of PQ × gradient of OP = –5 × 0.2 = –1  

Hence, OP is perpendicular to PQ, ∆OPQ is a right-

angle triangle 

M1  

M1  

A1 must identify the 

perpendicular lines/right angle 

 

 (d)  Find the coordinates of R such that OPQR is a rectangle.     [2] 

Solution Mark 

Let R = (x, y) 

(
0+2.6

2
, 0) = (

𝑥+2.5

2
,

𝑦+0.5

2
)  

R = (0.1, –0.5) 

 

M1 

A1  

  

O 
x 

y 

P 

Q 
α° 
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8 The diagram below shows part of the graph of 𝑦 =
𝑥2+2𝑥+5

𝑥+3
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Find the coordinates of the minimum point P. [7] 

 

Solution Mark 

ⅆ𝑦

ⅆ𝑥
=

(𝑥+3)(2𝑥+2)−(𝑥2+2𝑥+5)(1)

(𝑥+3)2
  

2𝑥2+8𝑥+6−𝑥2−2𝑥−5

(𝑥+3)2
= 0  

x2 + 6x + 1 = 0 

𝑥 =
−6±√62−4(1)(1)

2
  

   = −3 ± 2√2 

When x = −3 − 2√2, y is a maximum 

When x = −3 + 2√2, y is a minimum 

P = (–0.172, 1.66) 

M1 quotient rule 

M1 
ⅆ𝑦

ⅆ𝑥
= 0 

 

 

M1 quadratic formula 

A1 accept -0.17157 and -5.8284 

M1 1st or 2nd derivative test 

A1 nature of s.p. 

A1 

 

 

 

 

 

 

 

 

  

x 

y 

0 

P 
× 
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9 (a) It is given that
2𝑥×32(2𝑥)

8𝑥+1 =
9(52𝑥)−52𝑥+1

5𝑥−5𝑥−1 . 

  Evaluate 10x without using a calculator. [5] 

Solution Mark 

2𝑥×25×2𝑥

23𝑥+3
=

9×52𝑥−52𝑥×5

5𝑥−5𝑥×
1

5

  

22𝑥+5

23𝑥+3
=

4×52𝑥

4

5
×5𝑥

  

4

2𝑥
= 5𝜒 × 5  

4

5
= 5𝑥 × 2𝑥  

10x = 0.8 

M1 change to common base 

 

M1 factorisation of RHS 

M1 simplification to one term 

on each side 

M1 isolate 2x and 5x  

A1 

 

 

 (b) Solve √𝑥 + 7 − 𝑥 − 1 = 0.  [3] 

 

Solution Mark 

√𝑥 + 7 = 𝑥 + 1  

x + 7 =  x2 + 2x + 1 

x2 + x – 6 = 0 

(x – 2)(x + 3) = 0 

x = 2 or –3 (reject as x + 1 > 0) 

 

M1 getting rid of square root 

 

M1 method to solve eqn 

A1 with rejection 
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10 A particle moves in a straight line so that its velocity, v m/s is given by v = t2 – 4t + 3,  

 where t is the time in seconds after passing a fixed point O. 

 

 (a) Find the acceleration of the particle when t = 1. [2] 

Solution Mark 

a = 2t – 4 

when t = 1, a = –2 m/s2  

M1  

A1  

 

 

 (b) Find the value(s) of t when the particle comes to instantaneous rest. [2] 

Solution Mark 

(t – 1)(t – 3) = 0 

t = 1 or 3 

M1 v = 0 

A1  

 

 

 

 (c) Find the displacement(s) of the particle at the instant when it comes to rest. [3] 

 

Solution Mark 

s = 
1

3
𝑡3 − 2𝑡2 + 3𝑡 + 𝑐 

s = 0 when t = 0, c = 0 

s =  
1

3
𝑡3 − 2𝑡2 + 3𝑡 

When t = 1, s = 
4

3
 m 

When t = 3, s = 0 m 

M1 indefinite integral of v 

 

 

B1 correct expression for s 

A1 for both values  

-1 if no unit 

 

 

 (d) Find the average speed of the particle for the first 4 seconds.   [3] 

Solution Mark 

When t = 4, s = 
4

3
 m 

Total distance travelled = 4 m 

average speed = 1 m/s 

M1 find s when t = 4  

M1 total distance 

A1 
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11 The diagram below shows a portion a plastic fibre cable, which allows light waves to 

pass through. The path of the light wave can be modelled by a trigonometric function. 

 

 

 

 

 

 

 

 

 

 

 

  

 (a) It is given that the diameter of the cable is 4 millimetres. 

   Find the amplitude of the light wave. [1]  

Solution Mark 

2 mm B1 

 

 

 (b) It is given further that the period of the light wave is 500 nanometres. 

  Find the length of the portion of cable shown in the diagram. [1] 

Solution Mark 

1500  nanometers B1 

 

 

 

 (c) Which of the following can be a suitable model for the light wave? 

  y = 2sin(πx) y = 2cos(πx)   y = 2sin(
𝜋

250
𝑥) 

  Explain your answer.   [3] 

Solution Mark 

y = 2sin(
𝜋

250
𝑥) 

The graph starts from the centre position 0, hence it is a 

sine graph. 

The coefficient of x, b is such that 
2𝜋

𝑏
= 500, hence b = 

𝜋

250
 

B1 

 

B1 choice of trigo ratio 

B1 coefficient of x 

 

 

 

 

 

 

 

plastic fibre cable 

x (in nanometres) 

y (in millimetres) 

0 4 mm 
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12 (a) Sketch the graph of y = –sinx + 1 and y = 3cos(2x) for 0° ≤ x ≤ 360° on the  

same axes.          [4] 

 

 

Solution Mark 

 B1, B1 each amplitude 

and max/min value 

 

B1, B1 each correct 

period, correct shape 

 

 

 (b) Hence, state the number of solutions to the equation –sinx + 1 = 3cos(2x) for  

0° ≤ x ≤ 360°.          [1] 

 

Solution Mark 

4 B1 

 

  

0 360° 

y 

x 

3 

–3  

2 

1 

180° 

y =  –sinx + 1 

y = 3cos(2x) 
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13 In the diagram below, TAX and TCY are tangents to the circle at A and C respectively. 

 AC meets TD at E and D is on BC such that TD is parallel to AB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Prove that angle ACB is equal to angle ATD. [2] 

 

Solution Mark 

∡𝐴𝑇𝐷 = ∡𝑋𝐴𝐵 (corresponding angles, AB // TD) 

            = ∡𝐴𝐶𝐵 (angles in alternate segments) 

B1  

B1 

-1 if no reason/wrong 

reason 

 

 

 (b) Explain why a circle can be drawn passing through the points T, A, D and C. [1]  

 

Solution Mark 

Angles in the same segment B1  

 

 

 (c) Hence, prove that CE × EA = DE × TE. [4]  

Solution Mark 

∡𝐴𝑇𝐸 = ∡𝐷𝐶𝐸 (from part a) 

∡𝑇𝐸𝐴 = ∡𝐶𝐸𝐷 (vertically opposite angles) 

∆ATE is similar to ∆DCE (AA similarity test) 
𝑇𝐸

𝐶𝐸
=

𝐸𝐴

𝐸𝐷
  

CE × EA = DE × TE 

M1 two reasons 

 

A1 similar triangles with 

test 

M1 

A1 

----------------------------------------------END OF PAPER---------------------------------------------- 

T 

A 

B 

C 

X 

Y 

D E 


