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Mathematical Formula 

1. ALGEBRA 

 

Quadratic Equation 

 For the equation ax2 + bx + c = 0, 
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2.  TRIGONOMETRY 
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1. A curve has the equation 
2 4 9y x px p= + − + , where p is a constant.   

   

 (a) Find the range of values of p such that 
2 4 9x px p+ − +  is always positive 

for all real values of x. 

 

[3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) In the case where p = 4, show that the line 6 8y x= −  is a tangent to the 

curve.  

[3] 
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2. (a) The function 
3 2( ) 2 6f x x ax bx= + + −  is divisible by 3x +  and '( )f x

leaves a remainder of 1 when divided by 1x − . 

 

    

  (i) Find the values of a and b. [3] 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (ii) Using the integer values of a and b found in part (i), factorise ( )f x  

completely. 

 

[3] 
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  (iii) Hence, solve 
2 32 3 11 6 0y y y+ − − = . [2] 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Fully factorize the expression 
6 354 16x y− . [2] 
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3. A factory manufactures miniature containers that are made up of a closed circular 

cylinder and a hemisphere which have the same radius. The radius of the cylinder 

is r cm and its height is h cm. The volume of the container is 
360  cm . 

 

 

 

 

 

 

 

 

 

 

 

    

 (a) Express h in terms of r. [2] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) The container is made up of two different types of thin metal sheets with 

negligible thickness. The cost of the cover and curved surface of the cylinder 

is 3 cents per cm2 and that of the hemisphere is 4 cents per cm2. The total 

cost of materials to make the container is C cents.  

Show that 
2 360

7C r
r


= + .  

 

 

 

[3] 
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(c) Given that r can vary, find the value of r which gives a stationary value of 

C. 
[2] 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) Find the nature of this stationary value and explain if the factory owner 

should continue to produce this container if he wants to keep the cost below 

$5.60.  

 

 

[3] 
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4. (a) Solve the equation 4 1 12 20(4 ) 3p p+ −+ = . [4] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Explain why 4 1 12 20(4 )p p k+ −+ =  has no solution if 
1

3
8

k  − . [3] 
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5. (a) Given that 

2(log )
64 0

log

y

x

x

y
+ = , express y in terms of x. [3] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Solve the equation 
2 2log 3 2log ( 1)x x+ = − . [4] 
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6. The height of water in a harbour at time t hours after midnight on a certain day 

is modelled by the formula 4.8sin 5.1h k t= +  where 0 24t  . 

 

   

 (a) State the maximum and minimum levels of the tide. [2] 

   

 

 

 

 

 

 

 

 

 (b) A tide cycle starts at high tide and ends when it is high tide again. Given 

that there are 2 tide cycles in 24 hours, show that 
1

6
k = . 

 

 

[1] 

   

 

 

 

 

 

 

 

 

 

 

 (c) Boats can come into the harbour when the tide is above 2 m. Find the range 

of times at which the boats can come into the harbour in the first 12 hour 

cycle.  

 

 

[4] 
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7. (a) (i) Prove the identity cot sin 2 cot cos 2x x x x− = . [3] 

    

 

 

 

 

 

 

 

 

 

 

 

 

  (ii) Hence, solve the equation 4cot 4sin 2 cos 2x x x− =  for 0 x   . [4] 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(b) A and B are acute angles such that 
6

sin( )
7

A B+ =  and 
2

sin cos
7

B A = . 

Without calculating angles A and B, find 
tan

tan

A

B
. 

 

 

 

[4] 
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8. 
 

(a) A particle moves along the curve 
2

3 1
y

x
=

+
in such a way that the  

y-coordinate of the particle is decreasing at a constant rate of 3 units per 

second. Find the y-coordinate of the particle at the instant when the  

x-coordinate is increasing at 0.125 units per second. 

 

 

 

 

[5] 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Show that 
2lny x x=  is an increasing function when 

1
x

e
 . [2] 
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9. The diagram below shows the graph of 
1

2 1
y

x
=

+
 and the tangent to the curve 

where the curve intersects the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 (a) Find the equation of the tangent.  [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Calculate the area of the shaded region. [4] 
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10. In the diagram below, BD is a tangent to circle ACB and AB is a tangent to 

circle BCDE. ACFE is a straight line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Show that AB is parallel to DE. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Name two triangles that are similar to triangle ABF. [2] 

   

 

 

 

 

 

 

 (c) Show that 2AF CF BF = . [2] 
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11. The diagram below, which is not drawn to scale, shows a triangle PQR with 

vertices ( 3,  9),  (3,  7) and (2,  1)P Q R− − . The point S which lies on PR is the 

foot of the perpendicular line from Q. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

    

 (a) Find the equation of QS. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Find the equation of a line that is parallel to PR and passes through Q. [2] 
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 (c) Find the area of triangle PQR. [2] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12. (a) Sketch the graph of 3xy = . [1] 

   

 

 

 

 

 

 

 

 

 

 
 

(b) In order to solve the equation 
9log (5 )

2

x
x− = , a suitable straight line has to 

be drawn on the same set of axes as the graph of 3xy = . Find the equation 

of the straight line.  

 

 

 

[2] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 (c) State the number of solutions for the equation 
9log (5 )

2

x
x− = .  [1] 
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