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2021 Year 6 H2 Math Preliminary Paper 1: Solutions

Qn 1: Solution

[4]

f(x)=x"+ax* +bx+c

f(2)=0 =16+4a+2b+c=0 =4a+2b+c=-16..()
f(3)=12 =81+9a+3b+c=12 =9a+3b+c=-69..(2)
f(4)=26 = 256+16a+4b+c=26=16a+4b+c=-230..(3)
Solving (1), (2) and (3),

a=-54, b=217, c=-234

Qn 2: Solution

[4]

Volume of water in the conical container at time t seconds,

V :lm’zh
3

tan60°:%:>r:h\/§

Therefore V =7h®
d—V =3r7h? %
dt dt

When t =15, V =947 —(27)(15) =647, 7h®* =647 =>h=4

dn =-2r +37r(4)2 = 1
dt 24

..Rate at which h is decreasing at the instant when t =15 is

— cms ™.
24
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Qn 3: Solutions

a
E?j ~[xtan xdx_[%tan XJ—J%( j
:X—tan x—ljl
2 2 1+x
N 1
:7tan1x—§[x tan~ x]
2
_X +1tan‘1x—§+c
2 2
8) Given the substitution u =1, we have d—u:—i2
2] X dx X
1
x? X X
:—jsinu du
=COSU +C
2
=Ccos| — |+¢C
X
OR
1
f5|n£x) dX:_f(_izjsin(_j dX
X X X
3
=Ccos| — |+¢C
X
EP; L () 1
I nmoosin(y) o 1)|m=
3] nj . 2 dx_n{cos(;ﬂ .
(n+1)7z (n+1)7z

I
i

x| cos(nz)—cos((n+1)x)]
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1 .
If niseven, = " S'ngi)dx:n[l—(—l) =2r a=2
1
(n+1)z

1
o <in(L
If n s odd, nj 1 NG gy —r[-1-1]=-20  a=-2
X
(n+)7

OR
a=2(-1)"
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Qn 4: Solutions

EZ} (2r +1)° —(2r -1)°

=[8r°+12r° +6r+1] | 8r® —12r” + 6r -1

=24r* +2
k=2
OR

(2r +1)3 —(2r —1)3

=[(2r+1)-(2r-1)][ (2r +1)" + (2r +1)(2r 1)+ (2r -1)’|

=2 4r* +4r +1+4r° —1+4r° —4r +1]

=2(12r* +1)
=24r?+2
k=2
Zn:(24r2+2): n ((2r+1)3—(2r—1)3)
r=1 r=1
24Zn: r’ +2§n:1=33 - T
r=1 r=1
+5° - 3
+7° - 5
+
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24Zn: r’+2n=(2n +1)3 -1
r=1

2# - [ (2n+1) ~(2n+1)]

:_(2211) [(2n+1)" 1]

(24D o2 2n)
(24D o2 2n)
:%n(n+1)(2n+1)
S
..p_6, g=1

(b)

[3] Letan:%.

. n3+3n2+3n+1—n3]

_3n*+3n+1
S

:3+§+i2
n n

lim {n[ % —1]} - Iim(3+§+izj=3>l.
n— an+1 n—oo n n

=1
Therefore ZF converges.

r=1
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Qn 5: Solutions

(a) 0
(I) | A |
3] |
L 6 o
O] g
(0.-1) /) i
(a)
(ii)
3] Q |
- y=r(x)
1=0 (-2,0) i
T » X
Ol (LO)\ !
x=0 X=2
(b) - X ~ ~ (1
3] y=1In 1—E —>y=Inl-x) > y=—In(l-x)=1In T
—>y= In(i]HnZ: In(L]
1-x 1-x
Scale the graph of y=1In (1—%) parallel to the x-axis by factor % , followed by a
reflection about the x-axis, followed by a translation of In 2 units in the positive y-
direction.
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Reflect the graph of y =In (1—%) about the x-axis, followed by a translation of 1

unit in the negative x-direction.
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Qn 6: Solutions

(a)
[2]

Letf(z)=2"+2z+4i
f(2i)=(2i) +2(2i)+4i
=8i° +4i+4i
=-8i+8i
=0
z = 2i is a root of the equation z° +2z+4i=0.

[3]

2 +22+4i=0
(z-2i)(z°+2iz-2)=0

—2i+-4+8

2

z=2iorz=

z=2iorz=-i+1

The other roots are 1—1i, —1—1.

(b)
[4]

We have

arg(wl):%r and arg(wz):%.
Hence
arg (ﬂj =arg(w,)—arg(w,)
Wl
_m 57

4 6
_In
12

w, ) W,
arg| —2 | =narg| =%
Wl Wl

_nr
12

Hence we need to find the least positive integer n such that

-nw _ « dm-1)z

——+m(27z'):( , meZ.
12 2

: 6-24m 6(1-4m)
Rearranging, n= - = - .
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Therefore we need to have an integer m such that 1—4mis positive (and thus
negative m) and a multiple of 7. Checking through the negative integer values of
m, we have 1-4m=5,9,13,17,21,.... The corresponding least value of n is

Method 1
therefore 18.
Method 2
m o 6(1—4m)
7
-1 %
-
-2 %
-
-3 E
.
-4 102
7
-5 18
Hence smallest n =18, corresponding to when m =-5.

Qn 7: Solutions
(i)
[3] %zcost, ﬂ:—lsint
d d 3
d—yz—ltant
dx 3
At P, d—yz—ltan p
dx 3
Gradient of normal =3cot p
Equation of normal at P: y—%cos p = (3cot p)(x—sin p)
y = (3cot p)x—%cos p
(i When t=-"", equation of normal: y—(—3cot£)x—§cosZ
[4] BEVER ' 4’7 3774
8
—3X——= - (*
32 (*)
For normal to cut C again, substitute x =sint, y :%cost into (*)
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%cost:—fs’sint—i

W2

%cost+3sint:—i

32

From GC, t=-2.5775(4 d.p.)
X =sin(-2.5775)=-0.53 (2 d.p.)

y= %cos(—2.5775) =-0.28 (2d.p.)
The coordinates of point A is (-0.53, -0.28).

(iii) y
[2] .
NN
0 X
=
(iv) | Area of required region
[2] — J'Oﬁy dx
= j %lcostd—x dt
03 dt
lez
=3 L cost dt
=0.214 units® (3sf)
Q8: Solutions
(i)
[2]

1

w
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(i)
[4]

dy —2X
1 dx 2)2’
(1+x)

Now, y =

At (c, d), we have
1 d-1  -2c —2c’

d= > and = > >
l+c c-0 (1+c¢?) (1+¢)

Hence we have
2
2C 1= 1 :
(1+C2) 1+c

— —2¢? +(1+ 02)2 = (1+ c2)

=c'-c?=0
:cz(cz—l)zo

=¢c=0 or c=41.

Sincec>0,c=1andd :%.

Equation of | is y_l _ (‘2(21;2
1+1

(x-1)= y:—§+1.

(iil)
[2]

1
1+x

= dx = [tan‘1 x]

AreaofRz_[1 E.
0 4

1
0

Area of R > Area of trapezium
(0.1) 1

4 2 2 4

= 7 >3 (Shown). 0

Note:
Besides using the formula for area of trapezium, we can also use the following:

J1—5+1dx:§.
o 2 4
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(iv) 1, 11
| x*dy=x| —-1dy

=7[In y—y]l%

)
i)

:>7r‘|';x2 dy>%ﬂ(12)(%j

:ﬂ(ln2—1)>£
2) 6

= In2>1+1=ﬂ=2 (shown).
6 2 6 3

Note:

Besides using the formula for volume of cone, can also consider

1
7:_[%(2—2y)2 dy:%.

. ) . 1
Now, Volume obtained > VVolume of cone with radius 1 and height —

Qn 9: Solutions

(i)

2 1 1
[4] | Where I, : r=| 1 |+A| —-1]intersects z:r.| —1|=10,
-3 1 1

2 1 1
1 (+4 -1||-| -1|=10
-3 1 1

(2-1-3)+A(1+1+1)=10=>31=12 = Ai=4

(2 1) (6
ON=| 1 |+4] -1|=|-3
-3 1 1

The coordinates of N is (6,—-3,1).
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E'Z']) @z@#ZM
— OA+ 20N —20A
— 20N —OA
6 2\ (10
=20 3|-| 1|=|-7
1 -3 5
(iii)

[4]

-1 3
Equation of line I:r=| 1 +s[0], seR

—4 1
-2
When s=1, r=| 1 |=0A,soAliesonl
-3
Let point of intersection of | and p, be X.
-1 3 1
When | intersects p;, 1 |+s/0(|.|-1/=10 =>s=4
—4 1 1
11
OX =| 1
0

10
Equation of reflected line I' :r = (—7

10 11
+ul|-7|-1
5 0

/
[10 [—1
I':r=|-7|+u|-8|, wpeR
5 5
(iv) 8
(21| bistance between p, and p, :%AB :% —8} - 43
8
OR
1
Distance between p, and p, =BN = AN =|4| -1 | =43
1
OR
1 10 1
p,:r|—1|=|-7]|-1]=22
1 5 1
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Distance between p, and p, = 2210 12 43

TN

OR
1 -1\( 1
XB.| -1 -8 -1
1 5\ 1

L2 45

Distance between p, and p, = =
T e 142407 3
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Qn 10: Solutions

[8]

[4]

Since the sum of money owed to the bank increases at a rate proportional to the

sum owed and Bob repays the bank at a constant rate r, ?:lit =kx—r, where k > 0.

When x = a, interest and repayment balance.
dx

Then —=0= ka—r:>k_
dt a

(x-a)

Therefore %:L( X)—r r="(x
dt a a

dx r
dt a(X a)

—d _j dt

In|x—a|:—+C ,CeR

a

n
|x—a|:eaec

n
X—a=Be? where B=+e°

n

X=Be? +a

Whent=0,x=A, A=B+a=>B=A-a

rt

For the loan to be repaid in a finite time T, x=(A—a)e? +amust be a decreasing

function as t increases. S0 A—a<0= A<a
When the loan is repaid, x = 0.
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Qn 11: Solutions

(i) 2 _ Vv

Now,
S =2xr’>+2xrh

=27r? +27r (Lz]
r

_oar?+ (Shown).
r

@) N_d_, N

d—S:0:4m‘—ﬁ2:0
dr r

= A4zr3-2V =0

S=2xr? +2l
r

(v j V
=2r| — | + -
2r (L)5

27

( )V + 20V
(ZHVZ)%(

1
3

3(22V?)",

where k =3 and m = 2.

7 (3

)

\Y € r r
When r_(zj E:(#):V

\Y

1
>
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Thereforer: h=1: 2.

Elzl]l) Largest spherical shaped ice that can be carved out has radius, R=r = (;/—ﬂ]g , since
when S is minimum, h = 2r.
Hence the volume of the largest spherical ice is
%ﬂR?’ = gﬂ'(;/—ﬂj = Z?V (Shown).
Ei\? No, the manufacturer should not proceed as the spherical shaped ice has volume at
1

2 1 . L :
least §V and so 3 of the volume of the cylindrical shaped ice will go to waste which

IS quite a lot.
OR

Yes, the manufacturer should proceed even though the spherical shaped ice has

2 1 . : . .
volume at least §V as the §V of crushed ice that is leftover during carving can be

used for other drinks which require crushed ice.
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