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Qn Suggested Solutions 
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(ii) Since coefficients of polynomial eqn are all real, by complex conjugate root theorem, 
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 Suggested Solution 
2 
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(ii) 
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Qn Solution 
3(i) Surface area 
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Let the volume be V. 
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(ii) 3
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Ratio of r : h is 1:1.  
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(b) 
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(ii) At Q, y = 0:  
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Qn Suggested Solutions 
5(a) 

 

By ratio theorem, 

  

Since can be expressed as a scalar multiple of  and O is a common point, the 
points A, O and R are collinear. 

The ratio of  
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(ii) ( ) 0⋅ × =r a b  refers to the collection of all points on the plane that is perpendicular to 
×a b  and containing the origin.  
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 Suggested Solution 
6(a)(i) # of selections . 

 
Alt: 
3C1 +3C1 = 6 

(ii) Case 1:  2 of the same colour 
 

 
Case 2:  3 of the same colour (answer from (a)) 

 
 
Case 3:  4 (all) the same colour 

 
 

 

 
(iii) 

 

 

 
 

(b) Total # of arrangements 
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=
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 Solution 

7i) 

 

ii) 

 

Expected net gain = E(X – 3) = E(X) – 3  

= (2dp) or 0.467 (3sf) 

Variance of net gain 

 = Var(X – 3)  

= Var(X)  

=  

iii) Let Y = X – 3 which denotes the net gain of one game. 
 
Since n = 30 is large, by Central Limit Theorem, 
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Qn Solution 
8 Let R  and L  be the number of right and left steps taken respectively. 
(i) Note that since counter starts at 0, R L−  gives the number of the ending position.  

 
For the counter to end at 7,k =   7 7R L R L− = ⇒ = +  
Also, since game is played for 10 stages, 10.R L+ =  
Hence, 3 17

2 2 (Or show that ) ( 7) 10L L L R+ + == ⇒ =
 
 

But L must be integer, hence it’s not possible for counter to end at 7.k =  
 
Alternative 1 
Case 1: R is odd, L is odd (since must add up 10) ⇒  R L−  is even. 
Case 2: R is even, L is even ⇒  R L−  is  even 
 
Hence, one can never end at an odd numbered position with 10 steps starting at 0.   
 
Alternative 2 
Any combination of 9 right steps and 1 left step leads to 8.k =   
Any combination of 8 right steps and 2 left steps leads to 6.k =  
 
Hence 7.k ≠     
 
Alternative 3 
Any combination of 9 right steps and 2 left step with a total of 11 steps leads to 7.k =   
Any combination of 8 right steps and 1 left step with a total of 9 steps leads to 7.k =   
 
Hence it is not possible to get to 7k =  in exactly 10 steps.     

(ii) For the counter to end at 6,k =   6R L− =  and 10R L+ =  
Hence 8R =  and 2.L =   
Any combination of 8 right steps and 2 left steps occurs with probability 8 2.p q   

Number of such combinations is 
10

45.
8
 

= 
 

  

Hence the probability that the counter ends at 6k = is 2845 .p q  
(iii) R ~ B(10, p) 

 
For the most probable end-point to be 6,k =  the mode of R is 8. 
As R is binomial, it suffices to ensure the two inequalities below are satisfied: 

87 3 2

9 1 8 2

10 10
  (1)

7 8

10 10
  (2)

9 8

p q p q

p q p q

   
<   

   
   

<   
   





     

From (1), 8
118(1 ) 3p p p >− < ⇒   

From (2) 9
112 9(1 )p p p << − ⇒

 
 
Hence we have 1 2

8 9 8 9
11 11 11 11 .i.e. ,   p p p< < = =   



(iv) Note that when 1,p p=  the modes of R are 7 and 8 i.e. most probable end-points for the 
counter are 4k =  and 6.k =  
When 11  (complement probability),p p= −  most probable end-points for the counter will be 

4k = −  and 6.k = −  (by symmetry since interchange right with left) 
 
Alternative   

8 31
11 11

3~ B 10,
11

Modes of 2 and 3

p

R

R

= − =

 
 
 

=

 

The two most probable end-points for the counter will be 4k = −  and 6.k = −  
 
 

Qn Suggested Solutions 
9(i) 1. The probability of a randomly chosen sweet being mint is a constant p  for each sweet in 

a bag.  
2. The event that a sweet in the bag is mint is independent of another sweet being a mint 
sweet. 

(ii) 
 
 
 
 
 
 
 
 

Let  X = number of mint sweets in a bag of 12 
~ B(12, )

Var( ) 12 (1 )
X p

X p p= −
  

 
From the graph, we can see that maximum
Var( )X  is 3 (when 1

2 )p =   
Hence, variance of X does not exceed 3.  
 
Alternative 

21
2Var( ) 12 (1 ) 2 3)1 (X p p p= − = − − +   

Since 21
2 ) 0,( p − ≥   

21
2

21
2

12(

V
1

) 0

) 3
ar( ) 3

2( 3

p

p
X

−

≤

∴

− +

≤−

≤

−   

 
(iii) P( 5) 0.1X = <    

 

 
 

  

  

  

  



From GC, 0.24704p <  or 0.60097p >  
0.24 or 0.60p p∴ < >   (2 d.p.) 

 
(iv) ( )12,0.65X B  

Required probability = ( )6 1 ( 5)P X P X≥ = − ≤      

                                                      
0.91536
0.915   (3sf)

=
=  

 
(v) Required probability = ( )50.91536 0.643 (3sf)=                        
(vi) Let Y be the number of mint sweets in a box.  

( )60,0.65 Y B  

Required probability = ( ) ( )30 1 29P Y P Y≥ = − ≤    
0.994  (3sf)=  

                          
(vii) The event in part (v) a subset of the event in part (vi).                        

 
 

Qn Suggested Solutions 
10 
(i) 

Let X denote queue time. 

If 2~ N(15,10 )X , then P(X < 0) = 0.0668, not close to zero. 

Since queue time cannot be negative, a normal model would not be suitable. 
(ii) Let Q denote haircut duration of a randomly chosen customer at Qcut (in min). 

2(9.2, )Q N σ  

 
P( 10) 0.35

10 9.2P 0.35

0.8 0.38532

2.0761
2.08 (3sf)

Q

Z
σ

σ
σ
σ

> ≤

− > ≤ 
 

≥

≤
≤

 

(iii) Let Q denote haircut duration of a randomly chosen customer at Qcut (in min).  
2(9.2,1.5 )Q N  

 
Given ( )P | 9.2 | 0.95Q k− > = , 
9.2 9.29406

0.0941
k

k
+ =

=  
 
 



Alternative 
( )By complement,  P 9.2 0.05

P 0.05
1.5

0.062707
1.5

0.0941

Q k

kZ

k

k

− < =

 < = 
 

=

=

 

(iv) Let S denote haircut duration of a randomly chosen customer at SPcut (in min). 
( )2~ N 20.7,3.1S  

1 2 1 2 3

2 2

Let M
5

2 9.2 3 20.7 2 1.5 3 3.1~ N ,
5 25

Q Q S S S+ + + +
=

 × + × × + ×
 
 

 

( )i.e. ~ N 16.1,1.3332M  

( ) ( )P 15 0.17037 0.170 3 s.f.M < = =  
                          

(v) The haircut duration of each customer must be independent of each other /  
All the haircut durations are independent. 

(vi) 
 
10 2 6(3 0.5 )
2 3 8

S Q
S Q
+ ≥ +
− ≥

 

2 3  N(13.8,58.69)S Q− 
 

 
(2 3 8) 0.77550 0.776 (3 sf )P S Q− ≥ = =  

   
 

Qn Suggested Solution 
11(i) Billy is interested in the stress levels of employees in the research department, and surveyed 

all 300 employees in the research department, thus the 300 employees constitute a 
population.  
 

(ii) Probability of selecting an employee from research department 
 = 100 1

300 3=  
 
Probability of selecting an employee from manufacturing department = 100 10

330 33=  
 
Since not every employee has the same chance of being selected, the method does not give 
us a random sample. 
 



(iii) ( 12) 12.8
12 12 11.84

80 80

x
x

− −
= + = + =
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( ) ( )( )

( )

2

22

2

121
12

80 1 80

12.81
16.19

79 80

0.17901 0.179 (3 s.f.)

x
s x

−
= − −

−

−
= −

= =

 
 
 

 
 
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∑∑

 

(iv) H0 : µ = 12 
H1 : µ < 12 
 

where µ is the population mean time taken 
 

Under H0, 
0.17901

~ N 12,
80

X  
 
 

 approximately by Central 

Limit Theorem since sample size of 80 is large. 
From GC, p-value = 0.000359  (3 s.f.) 
Since the p-value is very small, there is very strong evidence to reject H0 and conclude that 
the manager’s claim is valid. 

(v) Given, 

( ) ( )2 2

80
80sample variance 1.5

1 79

,x n
n

k

s
n

= =

= =
−

  

 

Under H0, 
21.5

~ N 12,
79

X
 
 
 

 approximately by Central Limit Theorem since 80n =  is large. 

Manager’s claim not supported ⇒  we do not reject H0 
 
Method 1 (critical value)  

 
Critical value is 11.60739 at 1% significance level. 

11.608  (3 d.p)k >   or 11.608  (3 d.p)k ≥  

Method 2 (p-value)  
  -value 0.01p >  
  ) 0.01P(X k≤ >  
   11.608  (3 d.p)k >  or 11.608  (3 d.p)k ≥  

 

11.60739   12 


